PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction
نویسندگان
چکیده
Gray selenium (Se) is one of the most widely used Se sources with very limited biocompatibility and bioactivity. In the present study, a simple method for the preparation of ultrasmall selenium nanoparticles (SeNPs) through direct nanolization of gray selenium by polyethylene glycol (PEG) was demonstrated. Monodisperse and homogeneous PEG-SeNPs with ultrasmall diameters were successfully prepared under optimized conditions. The products were characterized using various microscopic and spectroscopic methods, and the results suggest that the amphoteric properties of PEG and the coordination between oxygen and selenium atoms contributed to the formation of ultrasmall nanoparticles. PEG-SeNPs exhibited stronger growth inhibition on drug-resistant hepatocellular carcinoma (R-HepG2) cells than on normal HepG2 cells. Dose-dependent apoptosis was induced by PEG-SeNPs in R-HepG2 cells, as evidenced by an increase in the sub-G1 cell population. Further investigation on the underlying molecular mechanisms revealed that depletion of mitochondrial membrane potential and generation of superoxide anions contributed to PEG-SeNPs-induced apoptotic cell death in R-HepG2 cells. Our results suggest that PEG-SeNPs may be a candidate for further evaluation as a chemotherapeutic agent for drug-resistant liver cancer, and the strategy to use PEG200 as a surface decorator could be a highly efficient way to enhance the anticancer efficacy of nanomaterials.
منابع مشابه
Dinuclear zinc(II) complexes containing (benzimidazol-2-yl)benzene that overcome drug resistance in hepatocellular carcinoma cells through induction of mitochondria fragmentation.
Herein we demonstrated that dinuclear zinc complexes could overcome drug resistance in R-HepG2 drug resistance hepatocellular carcinoma cells through induction of mitochondria-mediated apoptosis or by triggering mitochondria fragmentation, depletion of the membrane potential and intracellular ATP levels.
متن کاملEvaluation of Silibinin effects on the Viability of HepG2 (Human hepatocellular liver carcinoma) and HUVEC (Human Umbilical Vein Endothelial) cell lines
Human hepatocellular carcinoma is one of the most common recurrent malignancies, for as much as, there is no effective therapy. Silibinin, a widely used drug and supplement for various liver disorders, demonstrated anticancer effects against human hepatocellular carcinoma, human prostate adenocarcinoma cells, human breast carcinoma cells, human ectocervical carcinoma cells, and human colon canc...
متن کاملEvaluation of Silibinin effects on the Viability of HepG2 (Human hepatocellular liver carcinoma) and HUVEC (Human Umbilical Vein Endothelial) cell lines
Human hepatocellular carcinoma is one of the most common recurrent malignancies, for as much as, there is no effective therapy. Silibinin, a widely used drug and supplement for various liver disorders, demonstrated anticancer effects against human hepatocellular carcinoma, human prostate adenocarcinoma cells, human breast carcinoma cells, human ectocervical carcinoma cells, and human colon canc...
متن کاملSynthesis, Characterization, and Evaluation of Cytotoxic Effects of Novel Hybrid Steroidal Heterocycles as PEG Based Nanoparticles
Anticancer agents featuring hybrid molecules can improve effectiveness and diminish drug resistance. The current study aimed to introduce newly synthesized heterocyclic steroids of promising anticancer effects loaded in polyethylene glycol (PEG)•based nanoparticles form. Several heterocyclic steroids (1-9) were synthesized via multicomponent reactions (MCRs) and confirmed via the analytical and...
متن کاملNovel Functionalized Selenium Nanoparticles for Enhanced Anti-Hepatocarcinoma Activity In vitro
Selenium nanoparticles loaded with an anticancer molecule offer a new strategy for cancer treatment. In the current study, anisomycin-loaded functionalized selenium nanoparticles (SeNPs@Am) have been made by conjugating anisomycin to the surface of selenium nanoparticles to improve anticancer efficacy. The prepared nanoparticles were fully characterized by transmission electronic microscopy, en...
متن کامل